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Abstract 
 
This paper proposes an integrated evolutionary optimization algorithm (IEOA) which is combined with genetic algo-

rithm (GA), random tabu search method (TS) and response surface methodology (RSM). This algorithm, in order to 
improve the convergent speed that is thought to be the demerit of GA, uses RSM and the simplex method. Though 
mutation of GA offers random variety, systematic variety can be secured through the use of tabu-list. Efficiency of this 
method has been proven by applying traditional test functions and comparing the results to GA. And it is an evidence 
that the newly suggested algorithm can effectively find the global optimum solution by applying it to minimize the 
weight of fresh water tank that is placed in the rear of ship designed to avoid resonance. According to the results, GA's 
convergent speed in initial phase has been improved by using RSM. An optimized solution was calculated without the 
evaluation of additional actual objective function. Finally, it can be concluded that IEOA is a very useful global optimi-
zation algorithm from the viewpoint of convergent speed and global search ability. 

 
Keywords: Evolutionary optimization algorithms; Genetic algorithm; Response surface methodology; Tabu search method; Simplex 

method; Fresh water tank 
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1. Introduction 

The focus of many dynamic analyses is to find the 
maximum response and avoid the resonance in a 
given structure under all excitation forces. Usually, 
these features provide the basis of a design limit and 
are thus employed to determine the dynamic charac-
teristics of a structure and its weight. For this reason, 
weight minimization for reducing the response and 
avoiding resonance has always been a major concern 
of design engineers.  

Many classic optimization methods and practical 
software have been developed and most of them are 
very effective, especially to solve practical problems. 

However, finding a global optimum solution for the 
system is difficult. To overcome this disadvantage, 
many search algorithms have been developed for 
searching a global optimum solution. One of the most 
popular methods is the genetic algorithm (GA) [1, 2]. 
The GA is a technique in the field of evolutionary 
computation, and it is a powerful and general global 
optimization method, which does not require the strict 
continuity of classical search techniques; instead, it 
allows non-linearity and discontinuity to appear in the 
solution space. Due to the evolutionary characteristics, 
the GA can handle all kinds of objective functions 
and constraints defined on discrete, continuous, or 
mixed search spaces. However, the global access of 
the GA requires a computationally random search. So, 
the convergent speed to the exact solution is slow. 
Furthermore, the coding of the chromosome for a 
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large dimensional problem will be very long in order 
to get a more accurate solution. This results in a large 
search space and huge memory requirements for the 
computation. To overcome these demerits, many 
researchers have studied developing many hybrid 
genetic algorithms which combine the genetic algo-
rithm with other ones [3-6]. These can save computa-
tion time and find the global solution as far as it goes. 
Therefore, the new algorithms are addressed to reach 
better accuracy and faster convergent speed to get an 
optimum solution in complicated and big structures 
like ships.  

Response surface methodology (RSM) [7] is an op-
timization tool that was introduced by Box and Wil-
son [8]. It is a collection of statistical and mathemati-
cal techniques that are useful for developing, improv-
ing, and optimizing processes. These techniques are 
employed in order to estimate the optimization func-
tion and to find search directions to sub-regions of the 
domain with improved and hopefully optimal solu-
tions. The simplex method (SM) is a derivative-free 
method of optimization that uses regular patterns of 
search involving simplexes [9]. This well known 
technique has proven to be popular for unconstrained 
objective functions. Tabu search (TS) is one of the 
recent metaheuristics originally developed for combi-
natorial optimization problems. Since the first presen-
tation of Glover [10, 11], many studies have emerged 
in this area, such as TS with random moves for con-
strained optimization problems [12].  

In this study, to search the optimum solution of 
multimodal function in high accuracy and high speed, 
a new hybrid evolutionary algorithm is suggested, 
which combines the merits of the popular algorithms 
such as GA, TS, RSM and SM. This algorithm, in 
order to improve the convergent speed that is thought 
to be the demerit of GA, uses RSM and SM. Though 
mutation of GA offers random variety, systematic 
variety can be secured through the use of a tabu list of 
TS. Especially, in the initial phase, GA's convergent 
speed can be improved by using RSM which is using 
the information on the objective function acquired 
through the GA process and then making response 
surface (approximate function) and optimizing this. 
The optimum solution was calculated without the 
evaluation of an additional actual objective function, 
and the GA’s convergent speed could be improved. 
The efficiency of this method has been proven by 
applying traditional test functions and comparing the 
results to GA. It also confirmed that the global opti-

mum solution is being searched efficiently by apply-
ing the proposed algorithm to weight minimization 
where avoiding resonance of the fresh water tank 
located on the rear of the ship was considered.  
 

2. Integrated evolutionary optimization  
algorithm (IEOA) 

2.1 Structure of IEOA 

The main idea is to reduce the number for evalua-
tion of the objective function by using RSM which is 
one among the designed experiments to reduce the 
repetitive number, since it is one of the demerits of 
optimum design. The IEOA consists of four main 
parts: (i) GA for governing the general algorithm, (ii) 
tabu-list for systematic variety of solution, (iii) RSM 
for improving convergent speed for getting a candi-
date solution, and (iv) modified SM for local search. 
Figure 1 represents the flowchart of the IEOA. The 
left side of the flowchart shows global search region 
that is similar to the flowchart of standard GA, ex-
cluding the function assurance criterion (FAC), a set 
of history, tabu-list, and RSM. These parts offer can-
didate solutions, which are considered as initial 
search points in the local search region. The right side 
represents the local search region. This part finds the 
optimum solution by the modified SM, which uses 
the final solution by results of the global search as 
initial search point. Fig. 1-1~Fig. 1-3 show the detail 
process of Part A, B, and C in Fig. 1 
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Fig. 1. Flowchart of proposed algorithm (IEOA). 
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Fig. 1-1. Flowchart of Part A (update Sh). 
 

  
Fig. 1-2. Flowchart of Part B (check tabu list). 
 

Part A shown in detail in Fig. 1-1 shows a set of 
history Sh region which provides the well distributed 
points to make a response surface. The Sh is con-
structed according to the following procedures: 

Step 1: Read individuals from the current popula-
tion 

Step 2: NSh = NSh + Psize 

 
 
Fig. 1-3. Flowchart of Part C (RSM). 

 
where NSh and Psize mean the size of a set of history 
and size of population, respectively. 

Step 3: if NSh ≤  NShmax, then go to step 7 
where NShmax means maximum size in Sh. 

Step 4: Evaluate the dense grade Dg for each indi-
vidual. 

Dg = max (dik) + mean (dik)  
where dik is Euclidian distance between i and k;  

( ) ( ) ,i kx x−  i = 1, …, NSh; i ≠ k  

Step 5: Rank the individuals for Dg. 
Step 6: Select the higher ranked first NShmax indi-

viduals. 
Step 7: Store the solutions in Sh and go out. 
Part B shown detail in Fig. 1-2 represents checking 

the tabu-list to have a diversity of solution. The one 
individual which is selected in GA’s individuals after 
crossover process is reviewed to ensure the diversity 
of solution. If the diversity of solution is ensured, the 
individual is selected and if not, the crossover process 
is repeated. That is, the individual is selected when it 
is located far away from the dense area. A dense 
grade criterion of solution and acceptance criteria of 
individual are D ⊂ RN for normalized domain and V ⊂ 
RN for a domain having the equally divided by NShmax 
from D where N is number of design variables. Let |V| 
is the size of V, then 

max

NlV
NSh

=   (1) 

where l is the one side length of domain D, δ (∈ R) is 
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the one side Euclidean length of hyper-polygon in V 
defined as follows: 

 

max

N
N

lV
NSh

δ = =   (2) 

 
An aspiration function for a given target design 

vector is represented to decide the acceptance of indi-
vidual as follows: 

 

1
1 ( )

NSh

a
k

f h r
=

= −∑ ( )
1

1 exp
NSh

k i
k

X Xγ
=

= − − −∑   (3) 

 
Let h (r) = e−γr, r = ||Xk − Xi||, where Xi is the posi-

tion of target individual.  
To set the γ, it is assumed that the ideal conditions 

are satisfied: (i) Sh is full, and (ii) all members of Sh 
are placed in the center of the NShmax sub-domains 
which are supposed to have same hyper-volume and 
not to have any cross set of each other and to fit the 
domain D absolutely. That is, 

 
max1 2, ,i j NShV V i j V V V Dφ= ≠ ⋅ ⋅ ⋅ =∩ ∪ ∪ ∪   (4) 

 
Then, set as fa = β, where β means the acceptance 

probability criterion.  
 

1
1

NSh
r

a
k

f e γβ −

=

= = −∑ ( )1 2N e Rγδ−= − +   (5) 

 
The second term on the right side corresponds to 

the closest member of Sh to the target individual. The 
third term, R, is the residuals. The nature of h (r), 
which is exponentially decreasing along with dis-
tances, makes R be much smaller than the first term. 

 
{ }2

21 2 2 ( 1)af N e N N e Rγδ γδ− −= − + − +   (6) 

 
The aspiration criterion is as follows: 
• If rand > fa then accept, where rand = [0 1] 
• If trial number > maximum trial number, where, 

set 50 
If the target individual is not satisfied with above 

aspiration criterion, one crossover is generated again 
and the process is repeated. The procedure is summa-
rized as follows: 

Step 1: Read N−1 individuals from selection proc-
ess. 

Step 2: Crossover N−2 individuals according to the 

crossover probability and go to step 5. 
Step 3: One individual selected for tabu-list. 
Step 4: If rand > fa, then go to step 5, otherwise re-

turn to step 3. 
Step 5: Add generated individuals. 
Part C shown detail in Fig. 1-3 represents an RSM 

region. It is largely divided into 3 parts. First, consid-
ering the boundary condition in the response surface 
for optimization, the upper and lower values of design 
variables can be considered in this calculation process. 
However, the merits of this method are diminished 
when additional constraints like natural frequency are 
considered, because it has to evaluate the objective 
function to get the results from external calculations. 
To overcome this problem, this study used Sh as the 
training data and inferred the satisfaction of constraint 
condition by using the radial basis function (RBF) 
neural network [13]. In this way, the calculation of 
actual problems could be avoided. Second, it makes a 
response surface from Sh by using the least square 
method (LSM). Finally, the optimum solution of the 
response surface is calculated by using TS. The gra-
dient-based algorithm can be used to increase the 
convergent speed for optimization. However, the 
solutions satisfying constraint conditions cannot be 
guaranteed since the constraint conditions are difficult 
to define precisely. Also, we adopt TS which has an 
excellent initial convergent speed, because the im-
plementation of the response surface concept is to 
search for the approximate candidate solution. The 
generated final solution is added with other existing 
GA’s individuals according to the sequence of Fig. 1 
and the calculation of fitness is performed.  

 
2.2 Implementation procedure of IEOA 

The procedure of the proposed algorithm can be 
summarized as follows: 

Step 1: The parameters (Psize, Pc, Pm, Ms and Mc) are 
set up. 
where Pc, Pm are crossover probability and mutation 
probability. Ms and Mc are selection and crossover 
method, respectively. 

Step 2: Generate the initial chromosome vk (k = 1, 2, 
…, Psize) randomly with n elements. 

1 2[ , , , ]k k k knv x x x= "   
When the chromosomes are generated, the element 

value range of each chromosome should be satisfied 
as L U

kj j kjx x x≤ ≤ . Each chromosome satisfies all con-
straints gi (vk) ≥ 0, ∀i. When a chromosome does not 
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satisfy the conditions, then the chromosome has the 
lowest fitness. So it has a low possibility of selection 
to the next generation after all.  

Step 3: Generate the initial solutions, and estimate 
constraint and set up a parameter range. 

Step 4: Evaluate the fitness of individuals. 
Step 5: Evaluate the FAC, if it is satisfied FAC = 1, 

go to step 12 otherwise go to step 6. 
Each candidate for optimum solutions is decided 

by the FAC [14]. The FAC is a standard value to es-
timate the convergence of the initial candidate. 

 
2

1

1 1( )( )

T
i i

T T
i i i i

f f
FAC

f f f f
−

− −

=  

 
where fi is the row vector, formed by the fitness val-
ues of the individuals at the ith generation and f T is 
the transpose of  f.  

The row size depends on the number of optimum 
solutions according to a designer’s requirement. 
Theoretically the range of FAC is from 0 to 1.0. 
When the value is equal to 1, the convergence of op-
timization is completed. However, the value is diffi-
cult to converge to 1.0 considering the many candi-
date solutions to be evaluated. Therefore, in this study, 
the FAC is set to 0.9999. 

Step 6: Update Sh: Sh = { ( XSh, F)| XSh ∈ RN, F ∈ 
R}, where XSh = [x1, x2, …, xN].  

Step 7: Perform selection and crossover, and check 
tabu-list. 

Step 8: Construct the response surface from Sh:  
 

1
2

0
1 1 2 1

N N N i

rs ii i ii i ij i j
i i i j

f x x x xα α α α
−

= = = =

= + + +∑ ∑ ∑∑  

 
where α0, αii and αij are coefficients calculated by 
LSM. 

Step 9: Train the RBF network by Sh to construct 
the constraint conditions approximately. 

Step 10: Calculate the optimum design on the re-
sponse surface by TS and generate one individual 
based on X*. 

Step 11: Mutate and go to step 4. 
Step 12: Search the optimum solutions by the local 

concentration search using modified SM for best can-
didate. 
 

3. Numerical examples of function optimizations 

3.1 Test function  

Three benchmark test functions are used to verify 

the efficiency of the proposed hybrid algorithm as 
shown in Fig. 2. These functions are often used to test 
optimization methods. The simulations are conducted 
for the 2-dimensional case. The first function is to be 
maximized, and the others are to be minimized. 

The first one is the four-peak function, which has 
one global optimum with three local optima and is 
defined as  

 
2

61
1 2 10 1

2
62

10 2

0.2( , ) exp log (0.25) cos (1.5 )
0.8

0.1exp log (0.25) cos (1.5 )
0.8

xf x x x

x x

π

π

⎛ ⎞−⎛ ⎞= ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞−⎛ ⎞+ ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
where −0.4 ≤ x1, x2 ≤ 1. This test function has a global 
optimum solution f(x) = 1.954342 at x1 = 0, x2 = 0, 
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(c) Rastrigin function 
 
Fig. 2. Test functions. 
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and three local optima solutions f(x) = 1.807849, 
1.705973 and 1.559480 as shown in Fig. 2(a). Con-
ventional gradient based hill-climbing algorithms can 
be easily stuck to a local optimum because of their 
dependency on the start point, while the global search 
algorithm finds global optimum in general.  

The Rosenbrock function is defined as  
 

2 2
1 2 1 2 1( , ) 100( ) (1 )f x x x x x= − + −   

 
where −2.0≤ x1, x2 ≤ 2.0. This function is called a 
banana function [15] whose shape is presented in Fig. 
2(b). The objective of this function is to find the vari-
able x, which minimizes the objective function. This 
function has only one optimum solution f(x) = 0 at x1 
= 1.0 and x2 = 1.0. It is difficult to find an optimum 
solution because of an extremely deep valley along 
the parabola 2

1 2x x=  that leads to the global mini-
mum [16].  

The Rastrigin function is defined as 
 

2
2

1
( ) 2 10 { 10cos(2 )}i

i
f x iπ

=

= × + −∑x  

 
where −5.0≤ x1, x2 ≤ 5.0. This function is often used to 
evaluate the global search ability because there are 
many local minima around the global minimum as 
shown in Fig. 2(c). It is not easy to find a global 
minimum within a limited function call. This function 
has 220 local minima and one global minimum f(x) = 
0 at (0, 0). 

 
3.2 Simulation results  

Fig. 3 shows the convergence trend of objective 
function for each test function. According to the re-
sults, GRSM (GA+RSM) and IEOA (GA+RSM+tabu 
list) algorithms which are based on RSM have faster 
convergent speed and more accurate solutions than 
standard GA, which validated the efficiency of RSM 
on the calculation. Also, the tabu list enables conver-
gence to solutions quickly on the multimodal function 
due to the systematic diversity of solution. The setting 
parameters for each algorithm are listed in Table 1. 
Table 2 shows the comparison of optimization results 
for the above stated three test functions. The evalua-
tion number means total evaluation number of the 
objective function used in optimization procedure, 
and it is directly proportional to the total calculation 
time. According to the results, for all test functions, 
IEOA can give better solutions than GA on accuracy 

and convergent speed. For the Rastrigin function, 
which is very useful to evaluate the global search 
ability because there are many local minima around 
the global minimum, IEOA found a global minimum 
with higher accuracy and less elapsed time compared 
to GA. According to these results, the proposed hy-
brid algorithm is a powerful global optimization algo-
rithm from the view of convergent speed and global 
search ability. 
 
Table 1. Set parameters for GA and IEOA. 
 

Parameters Value Remarks 
No. of generation 

Population size, Psize 
Crossover probability, Pc 
Mutation probability, Pm 

100 
100 
0.5 
0.1 

GA & IEOA

Size of Sh for RSM, NShmax 
Step size for TS 

Count number for TS 

1000 
10 
3 

IEOA only 
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(c) Rastrigin function 

 
Fig. 3. Convergent trend of objective function.  
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Table 2. Comparison of optimization results. 
 

Results 
Test 

function 
Exact  

solutions 
Methods

f(x) x1, x2 

No. of 
evaluation

Four-peak 
function 

f(x) = 1.9543 
x1 = x2 = 0.0 

GA 
IEOA 

1.927 
1.927 

2.403×10-3, 2.787×10-3

2.736×10-3, 2.736×10-3
2353 
459 

Rosen-
brock 

function 

f(x) = 0.0 
x1 = x2 = 1.0 

GA 
IEOA 

1.640×10-5 
0.0 

0.996, 0.996 
1.0, 1.0 

1046 
419 

Rastrigin 
function 

f(x) = 0.0 
x1 = x2 = 0.0 

GA 
IEOA 

1.586×10-4 
0.0 

1.408×10-4, 8.15×10-4

−3.076×10-9, −7.747×10-10
2109 
514 

 

4. Optimum design of fresh water tank of ship 

In the engine room and the rear region of a ship, 
there are many tank structures that contact fresh and 
sea water or fuel and lubricating oil. Also, these are 
possibly subject to the excessive vibration during 
voyage because they are arranged around the main 
excitation sources of the ship such as the main engine 
and propeller. If problems occur, it takes a consider-
able cost, time and effort to improve the situation 
because the reinforcement work for emptying the 
fluid out of the tanks, additional welding and special 
painting and so on is required. It is very important to 
predict the precise vibration characteristics of the tank 
structures at the design stage. Optimum design needs 
to be applied. Especially when the structure is in con-
tact with fluid, much analysis time must be taken. 
Therefore, a new optimization algorithm is required 
for getting a short analysis time and accurate solution. 
In this study, optimum design of a fresh water tank in 
an actual ship is carried out to verify the validity of 
the proposed algorithm (IEOA) and the results are 
compared to that of standard GA. 

 
4.1 Vibration analysis of fresh water tank 

It is difficult to predict the vibration response of a 
local structure due to the complicated transfer mecha-
nism of excitation force and the difficulty of assum-
ing the damping ratio. Traditionally, therefore, a vi-
bration analysis considering the design of avoiding 
resonance is conducted to prevent the local vibration. 

In this study, the vibration analysis of the fresh wa-
ter tank is carried out by using NASTRAN which is a 
commercial finite element program and widely used 
for big structures like ships. The analysis model and 
arrangement of the fresh water tank are shown in Fig.  
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Fig. 4. Model and arrangement of fresh water tank. 
 
4. Fig. 5 shows the design variables and boundary 
condition of the fresh water tank. Considering the 
precision of analysis and time-consuming modeling 
process, the range of modeling of fresh water tank is 
constrained to one side of the tank. The boundary 
conditions for the model are specified as follows: 
simple supports are used to the tank boundary area 
which is connected to the other bulkhead and deck. 
Table 3 shows the specification of main excitation 
sources.  

In general, the design for avoiding local structure 
resonance in ships requires that the natural frequency 
of the structure must be two times higher than the 
blade passing frequency of the propeller under the 
maximum rpm of the main engine. In this study, the 
design target frequency is set as above 14.0Hz, which 
considers safety margins and twice blade passing 
frequency of the propeller (12.13Hz). 

Fig. 6 shows the first three modes and natural fre-
quencies of the fresh water tank by NASTRAN. 
These three modes frequently occur on the fresh wa-
ter tank during a voyage. Especially, the 1st mode 
(8.60Hz) is a stiffener (stringer) mode which gener-
ates a strong vibration and much effect on the struc-
ture. In this model, the first natural frequency of the 
structure is also within the resonance region where 
the twice blade passing frequency of propeller is 
12.13Hz. Therefore, the natural frequency of the 
structure is needed to be increased up to the target 
frequency under the condition that the tank is fully 
filled. The natural frequency of structure which is 
contacting fluid can be changed according to the wa-
ter line of the tank. So, in order to design a safe struc-
ture, three modes of the fresh water tank are con-
cerned in this study. 
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Table 3. Specification of main excitation sources. 
 

Excitation Excitation 
source MCR 

Order Frequency 

Main engine 
(6S 70MC-C) 

3rd 
4th 
6th 

4.55 Hz 
6.07 Hz 
9.10 Hz 

Propeller 
(Blade: 4ea) 

91 rpm 
1st 
2nd 

6.07 Hz 
12.13 Hz 
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Fig. 5. Design variables and boundary conditions of fresh 
water tank. 

 

 
 

(a) 1st mode (8.60Hz) 
 

 
 

(b) 2nd mode (18.82Hz) 
 

 
 

(c) 3rd mode (19.17Hz) 
 
Fig. 6. Mode shapes of fresh water tank. 

4.2 Optimum design of fresh water tank 

The main vibration modes on the fresh water tank 
are stiffener modes in transverse direction. One of the 
most important factors is the stiffness of the stiffeners. 
In this study, the stiffener size and plate thickness of 
fresh water tank in Fig. 4 are defined as design vari-
ables in equation (7). 

 
x = {S1 S2 S3 S4 S5 S6 S7 S8 P1 P2}T   (7) 
 

where S and P mean stiffener size and plate thickness, 
respectively. 

The web length of stiffener Lw is restricted as two 
categories such as Eq. (8) according to a shipyard’s 
practice. 

 
150 ≤ Lw ≤ 450 mm for stiffeners (S1 - S7), 500 ≤ Lw 

≤ 1000 mm for stringer (S8)  (8) 
 
Also, the basic concept of local vibration design is 

the minimization of the response at each point. How-
ever, it is difficult to evaluate how much the excita-
tion force influences the local structure. So, to avoid 
resonance, the first natural frequency of the structure 
is restricted as Eq. (9) which considers a safety mar-
gin of about 15% with twice blade passing frequency 
of the propeller (12.14Hz). 

 
ω1 ≥ 14.0Hz  (9) 
 
The objective function combines linearly the 

weight of fresh water tank with natural frequency of 
structure like Eq. (10). The objective is to get an eco-
nomic and sound structure to reduce the weight of 
stiffener W and to increase the first natural frequency 
ω1. 

 
10

10

Minimize ( ) t

t

Wf x
W

ω
α β

ω
⎛ ⎞⎛ ⎞

= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
  (10)  

 
where, subscript t and 0 mean target and current val-
ues, respectively. α and β are weighting factors and 
set α = 0.5, β = 0.5 in this paper. 

 
4.3 Optimization results and discussion 

The optimum design was carried out to get an op-
timal size of stiffener and plate thickness on the fresh 
water tank to maintain its anti-vibration design. Table 
4 shows the results of the design variables before and 
after optimization. It shows that the stringer S8 is in- 
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Table 4. Comparison of original and optimal design variables.  
 

Optimum design Design  
variable 

Original 
design GA IEOA 

Remarks
(IEOA) 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
P1 
P2 

200 
200 
200 
200 
200 
200 
200 
550 
11.0 
11.0 

214 
320 
253 
325 
328 
277 
281 
893 
10.7 
10.6 

207 
223 
285 
283 
303 
251 
230 
947 
10.3 
10.0 

4.0% 
12.0% 
43.0% 
42.0% 
52.0% 
26.0% 
15.0% 
72.0% 
−6.36% 
−9.09% 

 
Table 5. Comparison of results.  
 

Item Original  
design 

Optimum 
design Remarks

Natural frequency 
Weight 

8.60Hz 
47.88kN 

14.02Hz 
45.62kN 

163 % 
−4.73 % 

 
Table 6. Comparison of optimization results. 
 

Item Natural 
frequency Weight Objective 

function 
No. of 

evaluation
GA 

IEOA 
14.04Hz 
14.02Hz 

49.04kN 
45.62kN 

0.5547 
0.5167 

1846 
1638 
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Fig. 7. Convergent trend of objective function.  

 
increased by 72% and the others by 4.0-52%. This 
result indicates that the most reasonable modification 
method is to increase the stringer, which has an effect 
on decreasing the span of the vertical stiffeners. In 
this case, however, the plate thickness does not have 
any effect on the natural frequency of the structure. 
Table 5 shows the variation of natural frequency and 
weight of structure before and after optimization. 
According to the results, the first natural frequency 
increased by 163% from 8.6Hz to 14.02Hz, and the 
safety margin with twice passing frequency of the 
propeller correspondingly changed from -29.1% to 

15.5%. Therefore, the structure is free from resonance. 
Moreover, the weights of stiffeners which are applied 
to the design variables also decreased in spite of the 
higher natural frequency. In summary, the local vibra-
tion problems which require avoidance of structure 
resonance through the movement of natural frequency 
without additional weight have been successfully 
solved by the proposed optimization method. Table 6 
and Fig. 7 show the comparison of optimization re-
sults between GA and IEOA. The evaluation number 
means a total evaluation number of the objective 
function used in the optimization procedure, and is 
directly proportional to the total calculation time. 
According to the results, IEOA can give better solu-
tions than GA on accuracy and convergent speed. 
These results lead us to draw the conclusion that the 
proposed new hybrid algorithm is a more powerful 
global optimization algorithm from the view of con-
vergent speed and global search ability. 
 

5. Conclusions 

This paper proposes an integrated evolutionary op-
timization algorithm, as a new hybrid optimization 
algorithm that combines the merits of the popular 
algorithms such as GA, TS, SM and RSM. This algo-
rithm, in order to improve the convergent speed that 
is thought to be the demerit of GA, uses RSM and 
SM. Though the mutation of GA offers random vari-
ety, systematic variety can be secured through the use 
of tabu-list. Especially, in initial phase, GA’s conver-
gent speed can be improved by using RSM which 
uses the information on objective function acquired 
through GA process and then making response sur-
face (approximate function) and optimizing this. An 
optimized solution was calculated without the evalua-
tion of additional actual objective function, and the 
GA’s convergent speed could be improved. Effi-
ciency and effectiveness of this method has been 
proven by applying popular test functions and com-
paring the results with GA. Also, the usefulness of 
newly suggested algorithm for finding the global 
optimum solution is proved by applying it to the 
weight minimization design where avoiding reso-
nance of the fresh water tank located on the rear of 
the ship was considered. 
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